
Preliminary Comments

ShieldNetwork Token

Jun 16th, 2021

Table of Contents

Summary

Overview

Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings

SNC-01 : Unlocked Compiler Version

SNC-02 : Functionality Optimization

SNC-03 : Ambiguous Calculation

SNC-04 : Usage of `transfer()` for sending Ether

SNC-05 : Unchecked Value of ERC-20 `transfer()`/`transferFrom()` Call

SNC-06 : Potential Over-centralization of Functionality

Appendix

Disclaimer

About

ShieldNetwork Token Preliminary Comments

Summary

This report has been prepared for ShieldNetwork Token smart contracts, to discover issues and

vulnerabilities in the source code of their Smart Contract as well as any contract dependencies that were

not part of an officially recognized library. A comprehensive examination has been performed, utilizing

Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

ShieldNetwork Token Preliminary Comments

Overview

Project Summary

Project Name ShieldNetwork Token

Description A deflationary yield token, based on SafeMoon

Platform BSC

Language Solidity

Codebase 0xf2e00684457de1a3c87361bc4bfe2de92342306c

Commit

Audit Summary

Delivery Date Jun 16, 2021

Audit Methodology Static Analysis, Manual Review

Key Components ShieldNetwork.sol

Vulnerability Summary

Total Issues 6

Critical 0

Major 0

Medium 1

Minor 3

Informational 2

Discussion 0

ShieldNetwork Token Preliminary Comments

https://www.bscscan.com/address/0xf2e00684457de1a3c87361bc4bfe2de92342306c#code

Audit Scope

ID file SHA256 Checksum

SNC ShieldNetwork.sol c8b021eb678c14b90d8a61e0deb36aca2c129bdd724ac07149e3c5cfedf74bc8

ShieldNetwork Token Preliminary Comments

Findings

ID Title Category Severity Status

SNC-01 Unlocked Compiler Version Language Specific Informational Pending

SNC-02 Functionality Optimization Gas Optimization Informational Pending

SNC-03 Ambiguous Calculation Logical Issue Medium Pending

SNC-04 Usage of transfer() for sending Ether Volatile Code Minor Pending

SNC-05
Unchecked Value of ERC-20

transfer() /transferFrom() Call
Volatile Code Minor Pending

SNC-06 Potential Over-centralization of Functionality
Centralization /

Privilege
Minor Pending

ShieldNetwork Token Preliminary Comments

6
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 1 (16.67%)

Minor 3 (50.00%)

Informational 2 (33.33%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623833540998
https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623833870800
https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834183644
https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834525068
https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834629020
https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834770722

SNC-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational ShieldNetwork.sol: 78 Pending

Description

The contract specifies an unlocked compiler version. An unlocked compiler version in the source code of

the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version numbers.

This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that

would be hard to identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623833540998

SNC-02 | Functionality Optimization

Category Severity Location Status

Gas Optimization Informational ShieldNetwork.sol: 1139~1141 Pending

Description

The linked conditional will cause the one in L1144 to always yield true .

Recommendation

We advise to optimize the linked code blocks.

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623833870800

SNC-03 | Ambiguous Calculation

Category Severity Location Status

Logical Issue Medium ShieldNetwork.sol: 1006 Pending

Description

The linked statement will subtract the rBurnAmount amount from the _rTotal , even in the case where

the user does not own enough reflections in L1000.

Recommendation

We advise to revise the linked statements.

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834183644

SNC-04 | Usage of transfer() for sending Ether

Category Severity Location Status

Volatile Code Minor ShieldNetwork.sol: 1274 Pending

Description

After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use .transfer() or

.send() for transferring ether as these functions have a hard-coded value for gas costs making them

obsolete as they are forwarding a fixed amount of gas, specifically 2300 . This can cause issues in case the

linked statements are meant to be able to transfer funds to other contracts instead of EOAs.

Recommendation

We advise that the linked .transfer() and .send() calls are substituted with the utilization of the

sendValue() function from the Address.sol implementation of OpenZeppelin either by directly

importing the library or copying the linked code.

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834525068
https://eips.ethereum.org/EIPS/eip-1884
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/87326f7313e851a603ef430baa33823e4813d977/contracts/utils/Address.sol#L37-L59

SNC-05 | Unchecked Value of ERC-20 transfer()/transferFrom() Call

Category Severity Location Status

Volatile Code Minor ShieldNetwork.sol: 1269 Pending

Description

The linked transfer() /transferFrom() invocations do not check the return value of the function call

which should yield a true result in case of a proper ERC-20 implementation.

Recommendation

As many tokens do not follow the ERC-20 standard faithfully, they may not return a bool variable in this

function's execution meaning that simply expecting it can cause incompatibility with these types of

tokens. Instead, we advise that OpenZeppelin's SafeERC20.sol implementation is utilized for interacting

with the transfer() and transferFrom() functions of ERC-20 tokens. The OZ implementation optionally

checks for a return value rendering compatible with all ERC-20 token implementations.

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834629020
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

SNC-06 | Potential Over-centralization of Functionality

Category Severity Location Status

Centralization / Privilege Minor ShieldNetwork.sol: 1266, 1273 Pending

Description

The linked function is meant to be used in an edge-case situation whereby the contract owner can

arbitrarily transfer tokens/Ether to any address.

Recommendation

We advise this functionality to be guarded by a time delay to ensure that the normal course of operation

of the contract has progressed.

ShieldNetwork Token Preliminary Comments

https://accelerator.audit.certikpowered.info/project/b3c199b0-ce7f-11eb-a97e-353e29491e57/report?fid=1623834770722

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ShieldNetwork Token Preliminary Comments

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may

not be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s

prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project

or team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

ShieldNetwork Token Preliminary Comments

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ShieldNetwork Token Preliminary Comments

